The Fort Worth Press - Sur la trace des plus grandes étoiles de l'Univers

USD -
AED 3.673042
AFN 68.112673
ALL 94.198378
AMD 389.366092
ANG 1.801814
AOA 913.000367
ARS 1003.735016
AUD 1.538462
AWG 1.8025
AZN 1.70397
BAM 1.877057
BBD 2.018523
BDT 119.468305
BGN 1.87679
BHD 0.376794
BIF 2953.116752
BMD 1
BND 1.347473
BOB 6.908201
BRL 5.801041
BSD 0.99976
BTN 84.384759
BWP 13.658045
BYN 3.27175
BYR 19600
BZD 2.015164
CAD 1.39805
CDF 2871.000362
CHF 0.89358
CLF 0.035441
CLP 977.925332
CNY 7.243041
CNH 7.25914
COP 4389.749988
CRC 509.237487
CUC 1
CUP 26.5
CVE 105.825615
CZK 24.326204
DJF 178.031575
DKK 7.158304
DOP 60.252411
DZD 134.221412
EGP 49.650175
ERN 15
ETB 122.388982
EUR 0.95985
FJD 2.27595
FKP 0.789317
GBP 0.798053
GEL 2.740391
GGP 0.789317
GHS 15.795384
GIP 0.789317
GMD 71.000355
GNF 8617.496041
GTQ 7.717261
GYD 209.15591
HKD 7.783855
HNL 25.264168
HRK 7.133259
HTG 131.234704
HUF 395.000354
IDR 15943.55
ILS 3.70796
IMP 0.789317
INR 84.43625
IQD 1309.659773
IRR 42075.000352
ISK 139.680386
JEP 0.789317
JMD 159.268679
JOD 0.709104
JPY 154.76904
KES 129.468784
KGS 86.503799
KHR 4025.145161
KMF 472.503794
KPW 899.999621
KRW 1404.510383
KWD 0.30785
KYD 0.833149
KZT 499.179423
LAK 21959.786938
LBP 89526.368828
LKR 290.973655
LRD 180.450118
LSL 18.040693
LTL 2.95274
LVL 0.60489
LYD 4.882192
MAD 10.057392
MDL 18.23504
MGA 4666.25078
MKD 59.052738
MMK 3247.960992
MNT 3397.999946
MOP 8.015644
MRU 39.77926
MUR 46.850378
MVR 15.460378
MWK 1733.576467
MXN 20.427165
MYR 4.468039
MZN 63.910377
NAD 18.040693
NGN 1696.703725
NIO 36.786794
NOK 11.06835
NPR 135.016076
NZD 1.714149
OMR 0.384846
PAB 0.99976
PEN 3.790969
PGK 4.025145
PHP 58.939038
PKR 277.626662
PLN 4.16352
PYG 7804.59715
QAR 3.646048
RON 4.778204
RSD 112.294256
RUB 104.308748
RWF 1364.748788
SAR 3.754429
SBD 8.383555
SCR 13.699038
SDG 601.503676
SEK 11.040175
SGD 1.346604
SHP 0.789317
SLE 22.730371
SLL 20969.504736
SOS 571.332598
SRD 35.494038
STD 20697.981008
SVC 8.748021
SYP 2512.529858
SZL 18.034455
THB 34.480369
TJS 10.647152
TMT 3.5
TND 3.17616
TOP 2.342104
TRY 34.572825
TTD 6.790153
TWD 32.583504
TZS 2659.340659
UAH 41.35995
UGX 3694.035222
UYU 42.516436
UZS 12825.951341
VES 46.55914
VND 25419
VUV 118.722009
WST 2.791591
XAF 629.547483
XAG 0.031938
XAU 0.000369
XCD 2.70255
XDR 0.760497
XOF 629.547483
XPF 114.458467
YER 249.925037
ZAR 18.105415
ZMK 9001.203587
ZMW 27.617448
ZWL 321.999592
  • AEX

    13.6800

    879.8

    +1.58%

  • BEL20

    69.4500

    4228.29

    +1.67%

  • PX1

    41.8400

    7255.01

    +0.58%

  • ISEQ

    17.2700

    9613.97

    +0.18%

  • OSEBX

    3.8100

    1468.66

    +0.26%

  • PSI20

    48.3400

    6409

    +0.76%

  • ENTEC

    -5.8300

    1416.23

    -0.41%

  • BIOTK

    86.5000

    2989.04

    +2.98%

  • N150

    24.5300

    3295.3

    +0.75%

Sur la trace des plus grandes étoiles de l'Univers
Sur la trace des plus grandes étoiles de l'Univers / Photo: © ESA/HUBBLE/AFP

Sur la trace des plus grandes étoiles de l'Univers

Elles ont illuminé le cosmos naissant avec la lumière de millions de Soleil et pour la première fois des astronomes ont détecté la trace chimique d'étoiles supermassives, des "monstres célestes" dans une galaxie apparue il y a plus de 10 milliards d'années.

Taille du texte:

"Nous pensons avoir trouvé un premier indice de la présence de ces étoiles extraordinaires", a annoncé Corinne Charbonnel, professeure d'astronomie à l'Université de Genève dans un communiqué. Le superlatif n'est pas volé pour décrire des astres hors-normes, jusqu'ici uniquement théorisés.

L'étoile la plus massive observée à ce jour a une masse équivalente à celle d'un peu plus de 300 Soleils. Celle décrite dans l'étude parue dans l'édition de mai d'Astronomy & Astrophysics la laisse loin derrière, avec une masse estimée entre 5.000 et 10.000 fois celle du Soleil.

L'équipe menée par l'astrophysicienne, avec des scientifiques des Universités de Genève et Barcelone et de l'Institut d'astrophysique de Paris, avait théorisé leur existence en 2018 pour expliquer une énigme de l'astronomie: la grande diversité de composition des étoiles dans les amas globulaires.

Généralement très vieux, ces amas concentrent plusieurs millions d'étoiles dans un volume réduit. Les progrès de l'astronomie en dévoilent un nombre croissant, comme une sorte de "chaînon manquant" entre les premières étoiles et les premières galaxies. Notre voie lactée, qui contient plus de cent milliards d'étoiles, compte environ 180 amas globulaires, rappelle le communiqué de l'Université de Genève.

L'énigme repose sur le fait que bon nombre des étoiles de ces amas contiennent des éléments exigeant des températures colossales pour être produits, jusqu'à 70 millions de degrés pour l'aluminium. Des températures bien supérieures à celles que les étoiles atteignent dans leur cœur, au maximum 15 à 20 millions de degrés -comme notre Soleil.

La solution proposée est celle d'une "pollution" par une étoile supermassive jeune, seule à même d'atteindre une température aussi extrême. Les scientifiques imaginent que de telles étoiles supermassives sont nées par collisions successives dans l'espace restreint et très dense de l'amas.

- Une "étoile-graine" -

Une "espèce d'étoile-graine va engloutir de plus en plus d'étoiles", explique Mme Charbonnel à l'AFP. Et devenir "comme un immense réacteur nucléaire, continuellement alimenté en matière et qui va en éjecter beaucoup" dans l'amas. Cette matière va alimenter les jeunes étoiles en formation, en proportion de "leur proximité avec l'étoile supermassive".

Restait à trouver une preuve du phénomène. L'équipe l'a dénichée dans une galaxie des premiers âges de l'Univers, GN-Z11.

Découverte en 2015 par un collègue de Corinne Charbonnel, cette galaxie parmi les plus distantes observées, à plus de 13 milliards d'années lumière, et donc une des plus anciennes, existait déjà 440 millions d'années après le Big Bang.

Découverte avec le télescope spatial Hubble, l'observation de cette minuscule tache rouge avec son successeur James-Webb a livré deux indices clés: une très forte densité d'étoiles et surtout beaucoup d'azote. Un élément dont la présence ne peut s'expliquer dans de telles proportions que par la combustion d'hydrogène à des températures extrêmes. Un phénomène qui ne peut se produire que dans une étoile supermassive.

Si l'équipe tenait avec sa théorie "comme une espèce de trace de pas de notre étoile supermassive, là c'est un peu comme si on avait trouvé un os", reprend Mme Charbonnel: "Et on spécule sur la tête de la bête derrière tout ça...".

L'espoir d'en observer une un jour est mince. Les scientifiques estiment l'espérance de vie d'une étoile supermassive autour de deux millions d'années, un clin d'œil dans les échelles de temps cosmique.

Mais ils soupçonnent qu'elles pourraient être apparues dans des amas globulaires jusqu'il y a encore deux milliards d'années, soit relativement récemment. Et donc y laisser une trace permettant de mieux les cerner.

P.McDonald--TFWP