The Fort Worth Press - Las grandes posibilidades de los puntos cuánticos

USD -
AED 3.67298
AFN 68.986845
ALL 88.969965
AMD 387.269904
ANG 1.802796
AOA 928.498151
ARS 962.715602
AUD 1.467567
AWG 1.8
AZN 1.690641
BAM 1.753208
BBD 2.019712
BDT 119.536912
BGN 1.757025
BHD 0.376868
BIF 2899.760213
BMD 1
BND 1.29254
BOB 6.912131
BRL 5.424802
BSD 1.000309
BTN 83.60415
BWP 13.223133
BYN 3.273617
BYR 19600
BZD 2.01627
CAD 1.356615
CDF 2870.999439
CHF 0.849701
CLF 0.033745
CLP 931.129729
CNY 7.055102
CNH 7.053525
COP 4162.81
CRC 519.014858
CUC 1
CUP 26.5
CVE 98.841848
CZK 22.459602
DJF 178.123389
DKK 6.68035
DOP 60.041863
DZD 132.295347
EGP 48.529501
ERN 15
ETB 116.075477
EUR 0.895603
FJD 2.200302
FKP 0.761559
GBP 0.75146
GEL 2.729858
GGP 0.761559
GHS 15.725523
GIP 0.761559
GMD 68.490697
GNF 8642.218776
GTQ 7.732543
GYD 209.255317
HKD 7.79346
HNL 24.813658
HRK 6.799011
HTG 131.985747
HUF 352.559908
IDR 15165.7
ILS 3.767925
IMP 0.761559
INR 83.54165
IQD 1310.379139
IRR 42092.533829
ISK 136.389815
JEP 0.761559
JMD 157.159441
JOD 0.708699
JPY 144.245499
KES 129.020153
KGS 84.238498
KHR 4062.551824
KMF 441.349989
KPW 899.999433
KRW 1336.334982
KWD 0.30504
KYD 0.833584
KZT 479.582278
LAK 22088.160814
LBP 89576.048226
LKR 305.193379
LRD 200.058266
LSL 17.560833
LTL 2.95274
LVL 0.60489
LYD 4.750272
MAD 9.699735
MDL 17.455145
MGA 4524.124331
MKD 55.221212
MMK 3247.960992
MNT 3397.999955
MOP 8.029402
MRU 39.752767
MUR 45.879795
MVR 15.360331
MWK 1734.35224
MXN 19.35195
MYR 4.204986
MZN 63.849948
NAD 17.560676
NGN 1639.450294
NIO 36.81526
NOK 10.507885
NPR 133.76929
NZD 1.604583
OMR 0.384951
PAB 1.000291
PEN 3.749294
PGK 3.91568
PHP 55.662978
PKR 277.935915
PLN 3.82885
PYG 7804.187153
QAR 3.646884
RON 4.454898
RSD 104.853299
RUB 92.775837
RWF 1348.488855
SAR 3.752611
SBD 8.306937
SCR 13.62004
SDG 601.507153
SEK 10.19298
SGD 1.291935
SHP 0.761559
SLE 22.847303
SLL 20969.494858
SOS 571.648835
SRD 29.852985
STD 20697.981008
SVC 8.752476
SYP 2512.529936
SZL 17.567198
THB 33.026945
TJS 10.633082
TMT 3.5
TND 3.030958
TOP 2.342095
TRY 34.109425
TTD 6.803666
TWD 31.999763
TZS 2728.701997
UAH 41.346732
UGX 3705.911619
UYU 41.33313
UZS 12729.090005
VEF 3622552.534434
VES 36.762465
VND 24605
VUV 118.722009
WST 2.797463
XAF 587.999014
XAG 0.031897
XAU 0.000382
XCD 2.70255
XDR 0.741335
XOF 588.001649
XPF 106.906428
YER 250.324992
ZAR 17.524735
ZMK 9001.209021
ZMW 26.482307
ZWL 321.999592
Las grandes posibilidades de los puntos cuánticos
Las grandes posibilidades de los puntos cuánticos / Foto: © AFP

Las grandes posibilidades de los puntos cuánticos

El Premio Nobel de Química 2023 recompensó el miércoles a los descubridores de puntos cuánticos, un tipo de nanopartículas fundamentales en las nuevas pantallas de televisión y la cirugía tumoral.

Tamaño del texto:

Esas partículas podrían ser claves en el futuro para la computación cuántica y nuevas fuentes de energía.

- ¿Qué es un punto cuántico?

Las propiedades de los materiales normalmente dependen de los elementos que los componen.

Las propiedades de un material simple, como un átomo de hierro, dependen del número de electrones que orbitan alrededor de su núcleo.

Pero en 1937 un físico inglés, Herbert Fröhlich, postuló que a escala nanométrica (una milmillonésima de metro), las propiedades de una partícula responden a las leyes de la física cuántica.

A dicha escala, las propiedades de un electrón activado, por ejemplo con luz infrarroja, dependen del espacio por el cual se desplaza.

"Cuanto más pequeño es el espacio, mayor es la energía de los electrones", explicó el profesor Heiner Linke, miembro del Comité Nobel de Química. Como consecuencia, la luz que emitirá cuando se activa "se inclinará hacia el azul en un espacio más pequeño y hacia el rojo en un espacio más grande".

El único problema en la época de Herbert Fröhlich era la imposibilidad de fabricar materiales a una escala tan pequeña y medir sus propiedades. Habría que esperar más de cuarenta años para lograrlo.

- ¿Quién descubrió qué?

El ruso Alexei Ekimov y el estadounidense Louis Brus fueron los primeros en descubrir materiales de puntos cuánticos, cuya fabricación controlada fue posteriormente posible gracias al tercer miembro del trío premiado el miércoles, el tunecino-estadounidense Moungi Bawendi.

Alexei Ekimov hizo su descubrimiento en el Instituto de Óptica Vavilov a principios de la década de 1980.

En ese momento, este físico estaba trabajando en nanocristales de vidrio coloreado y "dopados" con una mezcla de cobre y cloro.

El científico observó que emitían luz más o menos roja o azulada según el tamaño de los cristales. Sin embargo, se enfrentó al problema de que este descubrimiento se aplicaba a un material "inamovible", sin posibilidad de manipulación posterior.

En ese mismo momento, y sin conocer los trabajos de Ekimov, el equipo estadounidense de Louis Brus estaba investigando la síntesis de nanopartículas en un coloide, una solución líquida que podía modificarse.

Brus encontró pruebas de efectos a nivel cuántico trabajando en cristales de sulfuro de cadmio.

"Durante mucho tiempo se pensó que no se podrían crear partículas, pero lo lograron", señaló el profesor Johan Aqvist, miembro del Comité Nobel.

Sin embargo, para que estas nanopartículas fueran útiles, "era necesario poder fabricarlas con un control extremo de su tamaño".

El químico Moungi Bawendi se adelantó en su laboratorio en el Instituto de Tecnología de Massachusetts.

En 1993, descubrió en un coloide la forma de controlar de manera precisa, mediante un calentamiento específico, la formación de nanocristales. Esto "abrió la puerta a su aplicación", continuó Aqvist.

- ¿Para qué sirve?

Los puntos cuánticos se encuentran en las pantallas QLED, la última generación de televisores, donde los nanocristales emiten diferentes colores según su tamaño.

Esto permite "mejorar la resolución de la pantalla y mantener la calidad del color durante más tiempo", explica Cyril Aymonier, director del Instituto de Química de la Materia Condensada de Burdeos, a AFP.

Sin embargo, hay un problema: "muchos de los puntos cuánticos utilizados hoy están hechos a base de cadmio", un metal pesado tóxico conocido por ser carcinogénico, señala este investigador francés cuyo laboratorio trabaja en puntos cuánticos basados en "nuevos elementos no tóxicos".

En medicina, los puntos cuánticos son útiles para diagnósticos por imágenes. Dependiendo de su tamaño, el color cambia para marcar, por ejemplo, "la vascularización de un tumor" canceroso, explicó el profesor Aqvist.

En el futuro, la investigación promete otras aplicaciones, empezando por paneles solares más eficientes y menos costosos.

"Actualmente, los paneles fotovoltaicos solo absorben una parte de la radiación solar. Pero a partir de estos nanocristales, podríamos desarrollar paneles solares que absorban todo el espectro de luz", apunta Cyril Aymonier.

Se esperan otras aplicaciones para las computadoras cuánticas, con capacidades de cálculo gigantescas, o para las comunicaciones cuánticas ultraseguras.

H.Carroll--TFWP