The Fort Worth Press - How climate change fuels extreme heat

USD -
AED 3.673042
AFN 68.112673
ALL 94.198378
AMD 389.366092
ANG 1.801814
AOA 913.000367
ARS 1003.735016
AUD 1.538462
AWG 1.8025
AZN 1.70397
BAM 1.877057
BBD 2.018523
BDT 119.468305
BGN 1.87679
BHD 0.376794
BIF 2953.116752
BMD 1
BND 1.347473
BOB 6.908201
BRL 5.801041
BSD 0.99976
BTN 84.384759
BWP 13.658045
BYN 3.27175
BYR 19600
BZD 2.015164
CAD 1.39805
CDF 2871.000362
CHF 0.89358
CLF 0.035441
CLP 977.925332
CNY 7.243041
CNH 7.25914
COP 4389.749988
CRC 509.237487
CUC 1
CUP 26.5
CVE 105.825615
CZK 24.326204
DJF 178.031575
DKK 7.158304
DOP 60.252411
DZD 134.221412
EGP 49.650175
ERN 15
ETB 122.388982
EUR 0.95985
FJD 2.27595
FKP 0.789317
GBP 0.798053
GEL 2.740391
GGP 0.789317
GHS 15.795384
GIP 0.789317
GMD 71.000355
GNF 8617.496041
GTQ 7.717261
GYD 209.15591
HKD 7.783855
HNL 25.264168
HRK 7.133259
HTG 131.234704
HUF 395.000354
IDR 15943.55
ILS 3.70796
IMP 0.789317
INR 84.43625
IQD 1309.659773
IRR 42075.000352
ISK 139.680386
JEP 0.789317
JMD 159.268679
JOD 0.709104
JPY 154.76904
KES 129.468784
KGS 86.503799
KHR 4025.145161
KMF 472.503794
KPW 899.999621
KRW 1404.510383
KWD 0.30785
KYD 0.833149
KZT 499.179423
LAK 21959.786938
LBP 89526.368828
LKR 290.973655
LRD 180.450118
LSL 18.040693
LTL 2.95274
LVL 0.60489
LYD 4.882192
MAD 10.057392
MDL 18.23504
MGA 4666.25078
MKD 59.052738
MMK 3247.960992
MNT 3397.999946
MOP 8.015644
MRU 39.77926
MUR 46.850378
MVR 15.460378
MWK 1733.576467
MXN 20.427165
MYR 4.468039
MZN 63.910377
NAD 18.040693
NGN 1696.703725
NIO 36.786794
NOK 11.06835
NPR 135.016076
NZD 1.714149
OMR 0.384846
PAB 0.99976
PEN 3.790969
PGK 4.025145
PHP 58.939038
PKR 277.626662
PLN 4.16352
PYG 7804.59715
QAR 3.646048
RON 4.778204
RSD 112.294256
RUB 104.308748
RWF 1364.748788
SAR 3.754429
SBD 8.383555
SCR 13.699038
SDG 601.503676
SEK 11.040175
SGD 1.346604
SHP 0.789317
SLE 22.730371
SLL 20969.504736
SOS 571.332598
SRD 35.494038
STD 20697.981008
SVC 8.748021
SYP 2512.529858
SZL 18.034455
THB 34.480369
TJS 10.647152
TMT 3.5
TND 3.17616
TOP 2.342104
TRY 34.572825
TTD 6.790153
TWD 32.583504
TZS 2659.340659
UAH 41.35995
UGX 3694.035222
UYU 42.516436
UZS 12825.951341
VES 46.55914
VND 25419
VUV 118.722009
WST 2.791591
XAF 629.547483
XAG 0.031938
XAU 0.000369
XCD 2.70255
XDR 0.760497
XOF 629.547483
XPF 114.458467
YER 249.925037
ZAR 18.105415
ZMK 9001.203587
ZMW 27.617448
ZWL 321.999592
  • SCS

    0.2300

    13.27

    +1.73%

  • GSK

    0.2600

    33.96

    +0.77%

  • RBGPF

    59.2400

    59.24

    +100%

  • RYCEF

    -0.0100

    6.79

    -0.15%

  • CMSC

    0.0320

    24.672

    +0.13%

  • BTI

    0.4000

    37.38

    +1.07%

  • RIO

    -0.2200

    62.35

    -0.35%

  • AZN

    1.3700

    65.63

    +2.09%

  • CMSD

    0.0150

    24.46

    +0.06%

  • NGG

    1.0296

    63.11

    +1.63%

  • BCE

    0.0900

    26.77

    +0.34%

  • BCC

    3.4200

    143.78

    +2.38%

  • RELX

    0.9900

    46.75

    +2.12%

  • BP

    0.2000

    29.72

    +0.67%

  • JRI

    -0.0200

    13.21

    -0.15%

  • VOD

    0.1323

    8.73

    +1.52%

How climate change fuels extreme heat
How climate change fuels extreme heat / Photo: © AFP/File

How climate change fuels extreme heat

Heatwaves across Asia and beyond have already broken records this year, while the arrival of the El Nino climate phenomenon will mean even more extreme temperatures.

Text size:

Here AFP looks at how climate change produces extreme heat, how scientists evaluate heatwaves and the risks to human health:

What is extreme heat?

Extreme heat is defined from a baseline of the average temperature in any one location, which varies widely across the world.

So a temperature of 25 degrees Celsius (77 degrees Fahrenheit) could be record-breaking in parts of Canada in spring, but might be below average for the same period in the Middle East.

What role does climate change play?

"Greenhouse gases trapping heat are at the root of the problem," said Martin Jucker, a lecturer at the University of New South Wales' Climate Change Research Centre.

Gases like carbon dioxide, methane and nitrous oxide play a crucial role in stopping heat from being reflected or lost from our atmosphere.

When this process is balanced, it keeps the planet at a livable temperature.

But an unsustainable increase in the amount of greenhouse gases in the atmosphere means more heat is being trapped, creating an overall global warming effect and other climate anomalies.

For example, warming air holds more moisture, which produces stronger and more frequent storms.

Overall, climate change is strengthening the duration, intensity and geographical reach of heatwaves, scientists say.

What about human interventions?

The problem is made worse in some places by the way cities are built -- the so-called heat island effect, where urban conglomerations are warmer than surrounding rural areas.

This happens because cities with too little greenery and too much concrete, asphalt and other building materials absorb heat and often offer insufficient shade.

The use of cooling technologies like air conditioners creates surging demand for energy, including the fossil fuels that are behind the climate crisis in the first place.

Are all heatwaves linked to climate change?

To determine climate change's role in any given event, experts use a technique called attribution science.

They simulate a world with and without climate change, using historical and more recent measurements, or computer models.

Comparing the two then "gives us a measure of how much more likely a given extreme is under climate change", Jucker told AFP.

Findings for over 500 events have been collected by the organisation Carbon Brief, with most shown to have been made more severe or more likely because of climate change.

Just a handful, including some floods, droughts and extreme cold, have been found to have no clear link to human activity, while in other cases experts found the evidence inconclusive.

"Every heatwave in the world is now made stronger and more likely to happen because of human-caused climate change," according to Friederike Otto, a scientist at Imperial College London and pioneer of attribution methodology.

How does extreme heat affect people?

Exposure to higher-than-normal temperatures produces health problems ranging from heatstroke and dehydration to cardiovascular stress.

Those with pre-existing heart conditions are especially vulnerable, as the body's response to heat is to pump more blood to the skin to help with cooling.

Risk is also unevenly distributed, with the elderly and the unwell more vulnerable, and those who work outdoors or live in places without air conditioning more likely to suffer.

The deadliest heat combines soaring temperatures with high humidity -- the moist air undermines the body's ability to cool off by sweating.

In May, a study warned a fifth of the world's population would be exposed to extreme and potentially life-threatening heat by the end of the century on our current climate track.

"For every 0.1C of warming above present levels, about 140 million more people will be exposed to dangerous heat," the study published in Nature Sustainability warned.

L.Davila--TFWP