The Fort Worth Press - Australian bushfires may have helped trigger La Nina

USD -
AED 3.673042
AFN 68.112673
ALL 94.198378
AMD 389.366092
ANG 1.801814
AOA 913.000367
ARS 1003.735016
AUD 1.538462
AWG 1.8025
AZN 1.70397
BAM 1.877057
BBD 2.018523
BDT 119.468305
BGN 1.87679
BHD 0.376794
BIF 2953.116752
BMD 1
BND 1.347473
BOB 6.908201
BRL 5.801041
BSD 0.99976
BTN 84.384759
BWP 13.658045
BYN 3.27175
BYR 19600
BZD 2.015164
CAD 1.39805
CDF 2871.000362
CHF 0.89358
CLF 0.035441
CLP 977.925332
CNY 7.243041
CNH 7.25914
COP 4389.749988
CRC 509.237487
CUC 1
CUP 26.5
CVE 105.825615
CZK 24.326204
DJF 178.031575
DKK 7.158304
DOP 60.252411
DZD 134.221412
EGP 49.650175
ERN 15
ETB 122.388982
EUR 0.95985
FJD 2.27595
FKP 0.789317
GBP 0.798053
GEL 2.740391
GGP 0.789317
GHS 15.795384
GIP 0.789317
GMD 71.000355
GNF 8617.496041
GTQ 7.717261
GYD 209.15591
HKD 7.783855
HNL 25.264168
HRK 7.133259
HTG 131.234704
HUF 395.000354
IDR 15943.55
ILS 3.70796
IMP 0.789317
INR 84.43625
IQD 1309.659773
IRR 42075.000352
ISK 139.680386
JEP 0.789317
JMD 159.268679
JOD 0.709104
JPY 154.76904
KES 129.468784
KGS 86.503799
KHR 4025.145161
KMF 472.503794
KPW 899.999621
KRW 1404.510383
KWD 0.30785
KYD 0.833149
KZT 499.179423
LAK 21959.786938
LBP 89526.368828
LKR 290.973655
LRD 180.450118
LSL 18.040693
LTL 2.95274
LVL 0.60489
LYD 4.882192
MAD 10.057392
MDL 18.23504
MGA 4666.25078
MKD 59.052738
MMK 3247.960992
MNT 3397.999946
MOP 8.015644
MRU 39.77926
MUR 46.850378
MVR 15.460378
MWK 1733.576467
MXN 20.427165
MYR 4.468039
MZN 63.910377
NAD 18.040693
NGN 1696.703725
NIO 36.786794
NOK 11.06835
NPR 135.016076
NZD 1.714149
OMR 0.384846
PAB 0.99976
PEN 3.790969
PGK 4.025145
PHP 58.939038
PKR 277.626662
PLN 4.16352
PYG 7804.59715
QAR 3.646048
RON 4.778204
RSD 112.294256
RUB 104.308748
RWF 1364.748788
SAR 3.754429
SBD 8.383555
SCR 13.699038
SDG 601.503676
SEK 11.040175
SGD 1.346604
SHP 0.789317
SLE 22.730371
SLL 20969.504736
SOS 571.332598
SRD 35.494038
STD 20697.981008
SVC 8.748021
SYP 2512.529858
SZL 18.034455
THB 34.480369
TJS 10.647152
TMT 3.5
TND 3.17616
TOP 2.342104
TRY 34.572825
TTD 6.790153
TWD 32.583504
TZS 2659.340659
UAH 41.35995
UGX 3694.035222
UYU 42.516436
UZS 12825.951341
VES 46.55914
VND 25419
VUV 118.722009
WST 2.791591
XAF 629.547483
XAG 0.031938
XAU 0.000369
XCD 2.70255
XDR 0.760497
XOF 629.547483
XPF 114.458467
YER 249.925037
ZAR 18.105415
ZMK 9001.203587
ZMW 27.617448
ZWL 321.999592
  • SCS

    0.2300

    13.27

    +1.73%

  • GSK

    0.2600

    33.96

    +0.77%

  • RIO

    -0.2200

    62.35

    -0.35%

  • RYCEF

    -0.0100

    6.79

    -0.15%

  • VOD

    0.1323

    8.73

    +1.52%

  • AZN

    1.3700

    65.63

    +2.09%

  • CMSD

    0.0150

    24.46

    +0.06%

  • NGG

    1.0296

    63.11

    +1.63%

  • CMSC

    0.0320

    24.672

    +0.13%

  • BCE

    0.0900

    26.77

    +0.34%

  • BCC

    3.4200

    143.78

    +2.38%

  • BTI

    0.4000

    37.38

    +1.07%

  • RELX

    0.9900

    46.75

    +2.12%

  • RBGPF

    59.2400

    59.24

    +100%

  • BP

    0.2000

    29.72

    +0.67%

  • JRI

    -0.0200

    13.21

    -0.15%

Australian bushfires may have helped trigger La Nina
Australian bushfires may have helped trigger La Nina / Photo: © AFP

Australian bushfires may have helped trigger La Nina

Australia's "Black Summer" bushfire catastrophe coughed up so much smoke it may have fuelled the global onset of La Nina in 2020, according to new research published Thursday.

Text size:

The report, in peer-reviewed journal Science Advances, said the bushfires were "exceptional" in their severity -- pumping out emissions on a scale similar to major volcanic eruptions.

It suggested this led to the formation of vast banks of cloud over the southeastern Pacific Ocean, which soaked up radiation from the sun and led to the cooling of surface water temperatures.

These disruptions could have helped trigger the start of an unusually long La Nina weather pattern, the researchers found.

The "Black Summer" bushfires raged across Australia's eastern seaboard from late 2019 to early 2020, razing swathes of forest, killing millions of animals, and blanketing cities in noxious smoke.

A rare "triple-dip" La Nina shaped global weather patterns between September 2020 and March 2023, whipping up a series of devastating tropical cyclones while exacerbating droughts in other parts of the planet.

Researchers John Fasullo and Nan Rosenbloom, from the National Center for Atmospheric Research in the United States, used modelling to demonstrate how emissions from the bushfires could shift weather patterns.

Bushfire smoke is laden with particles that act as "condensation nuclei", which attract water molecules in the atmosphere, seeding the formation of clouds.

- Atmospheric impact -

This blanket of cloud could cause "widespread surface cooling" in the tropical Pacific Ocean, the modelling showed, which is one of the key ingredients for the start of La Nina.

"The results here suggest a potential connection between this emergence of cool conditions in the eastern Pacific Ocean and the climate response to the Australian wildfire emissions," the paper stated.

Australian climate scientist Tom Mortlock said the bushfires caused clouds to form in a part of the Pacific that plays a crucial role in global climate regulation.

"The southeast corner of the Pacific is a really sensitive and important area for what goes on with El Nino and La Nina," he told AFP.

"Often we see the first signs of an El Nino or La Nina forming in that part of the ocean."

Pete Strutton, from the Australian Centre of Excellence for Climate Extremes, said it demonstrated the sheer scale of the bushfires.

"We've got an event that happened on the land in southeast Australia, which is having an impact on the atmosphere," he told AFP.

A separate team of British researchers last year found that the "Black Summer" bushfires spewed millions of tonnes of emissions into the atmosphere, likely aggravating the Antarctic ozone hole.

Global weather patterns oscillate between cooling La Nina and warming El Nino cycles -- with neutral conditions in between.

P.Grant--TFWP