The Fort Worth Press - Mammals became warm-blooded later than thought: study

USD -
AED 3.672946
AFN 69.500052
ALL 89.129913
AMD 387.090215
ANG 1.802797
AOA 929.493843
ARS 962.2544
AUD 1.478395
AWG 1.80125
AZN 1.697576
BAM 1.757785
BBD 2.019754
BDT 119.530148
BGN 1.758795
BHD 0.376819
BIF 2893
BMD 1
BND 1.293973
BOB 6.912202
BRL 5.462501
BSD 1.000306
BTN 83.75619
BWP 13.214754
BYN 3.273714
BYR 19600
BZD 2.016321
CAD 1.361255
CDF 2869.999734
CHF 0.84793
CLF 0.033731
CLP 930.749609
CNY 7.081982
CNH 7.101025
COP 4190.25
CRC 517.763578
CUC 1
CUP 26.5
CVE 99.497232
CZK 22.57345
DJF 177.71978
DKK 6.715695
DOP 60.049852
DZD 132.140158
EGP 48.528199
ERN 15
ETB 116.201822
EUR 0.90028
FJD 2.207098
FKP 0.761559
GBP 0.757795
GEL 2.682496
GGP 0.761559
GHS 15.709672
GIP 0.761559
GMD 69.000219
GNF 8649.999791
GTQ 7.737314
GYD 209.343291
HKD 7.793155
HNL 24.960336
HRK 6.799011
HTG 131.990006
HUF 354.9825
IDR 15303
ILS 3.77925
IMP 0.761559
INR 83.76325
IQD 1310
IRR 42105.000404
ISK 137.109473
JEP 0.761559
JMD 157.156338
JOD 0.7087
JPY 142.903497
KES 129.000055
KGS 84.362196
KHR 4070.000137
KMF 442.484777
KPW 899.999433
KRW 1328.885027
KWD 0.30493
KYD 0.833618
KZT 479.135773
LAK 22110.000269
LBP 89550.000143
LKR 303.443999
LRD 195.000207
LSL 17.5898
LTL 2.95274
LVL 0.60489
LYD 4.75502
MAD 9.75675
MDL 17.380597
MGA 4559.999503
MKD 55.372336
MMK 3247.960992
MNT 3397.999955
MOP 8.029155
MRU 39.698872
MUR 45.849845
MVR 15.349656
MWK 1735.495602
MXN 19.264751
MYR 4.249959
MZN 63.898241
NAD 17.589914
NGN 1639.430101
NIO 36.759447
NOK 10.595195
NPR 134.016106
NZD 1.610325
OMR 0.384965
PAB 1.000297
PEN 3.77515
PGK 3.92785
PHP 55.822505
PKR 278.150478
PLN 3.847005
PYG 7799.327737
QAR 3.64075
RON 4.479498
RSD 105.386004
RUB 93.623323
RWF 1340
SAR 3.752957
SBD 8.320763
SCR 13.467608
SDG 601.50018
SEK 10.211785
SGD 1.29708
SHP 0.761559
SLE 22.847303
SLL 20969.494858
SOS 571.000232
SRD 30.072499
STD 20697.981008
SVC 8.752662
SYP 2512.529936
SZL 17.590181
THB 33.410165
TJS 10.653204
TMT 3.51
TND 3.030985
TOP 2.3498
TRY 34.067403
TTD 6.794467
TWD 31.967986
TZS 2724.43999
UAH 41.467525
UGX 3720.813186
UYU 40.990752
UZS 12745.000347
VEF 3622552.534434
VES 36.733251
VND 24625
VUV 118.722009
WST 2.797463
XAF 589.560677
XAG 0.033144
XAU 0.000391
XCD 2.70255
XDR 0.741403
XOF 589.50093
XPF 106.250192
YER 250.350237
ZAR 17.552971
ZMK 9001.197294
ZMW 26.483144
ZWL 321.999592
  • RBGPF

    3.5000

    60.5

    +5.79%

  • CMSC

    0.0050

    25.055

    +0.02%

  • RYCEF

    0.0900

    6.55

    +1.37%

  • CMSD

    -0.0300

    24.98

    -0.12%

  • GSK

    -0.1300

    42.43

    -0.31%

  • SCS

    0.1000

    14.11

    +0.71%

  • RIO

    -0.0100

    62.91

    -0.02%

  • BTI

    -0.1300

    37.88

    -0.34%

  • NGG

    -0.3200

    70.05

    -0.46%

  • RELX

    -0.3900

    47.37

    -0.82%

  • VOD

    0.0500

    10.23

    +0.49%

  • BCC

    1.8200

    137.06

    +1.33%

  • JRI

    0.0600

    13.44

    +0.45%

  • BCE

    1.1000

    35.61

    +3.09%

  • BP

    -0.1200

    32.43

    -0.37%

  • AZN

    0.0500

    78.58

    +0.06%

Mammals became warm-blooded later than thought: study
Mammals became warm-blooded later than thought: study / Photo: © AFP/File

Mammals became warm-blooded later than thought: study

The ancestors of mammals started to become warm-blooded around 20 million years later than previously thought, researchers suggested Wednesday, after analysing inner-ear fossils hoping to solve "one of the great unsolved mysteries of palaeontology".

Text size:

Warm-bloodedness is one of the quintessential characteristics of mammals, along with fur, but exactly when they first evolved the feature has long been a subject of debate.

Previous research has indicated that the ancestors of mammals began evolving warm-bloodedness, or endothermy, around 252 million years ago -- around the time of the Permian extinction, known as the "Great Dying".

However figuring out the timeline has proved difficult.

"The problem is that you cannot stick thermometers in your fossils, so you cannot measure their body temperature," said Ricardo Araujo of the University of Lisbon, one of the authors of a new study in the journal Nature.

He was part of an international team of researchers that found a new way to determine how body heat changed throughout time, by examining the semicircular canals in the inner ears of 56 extinct species of mammal ancestors.

Fluid runs through the tiny ear canals, which help animals keep their balance.

The researchers realised that as body temperatures warmed up, so did the ear fluid.

Araujo gave the example of oil used to fry hot chips.

Before you warm the oil up, it is "very viscous, very dense," he told AFP.

"But then when you heat it up, you'll see that the oil is much runnier, it flows much more easily."

The runnier ear fluid led to animals evolving narrower canals -- which can be measured in fossils, allowing the researchers to track body temperature over time.

Unlike previous research on this subject, the team developed a model that not only works on extinct mammal ancestors, but also living mammals, including humans.

"It can look at your inner ear and tell you how warm-blooded you are -- that's how accurate the model is," lead study author Romain David of London's Natural History Museum told AFP.

Using the model, they traced the beginnings of warm-bloodedness to around 233 million ago, in the Late Triassic period.

- 'Not a gradual, slow process' -

Michael Benton, a palaeontologist at Britain's University of Bristol who was not involved in the study, said the new metric "seems to work well for a wide array of modern vertebrates".

"It doesn't just provide a yes-no answer, but actually scales the 'degree' of endothermy in terms of actual typical body setpoint temperature," he told AFP.

Benton, whose previous research had given the 252 million years date, said the transition to warm-bloodedness likely took place in stages, and "there were several significant prior steps before this semicircular canal switch".

Araujo said the new research suggested that warm-bloodedness came about simply and "very quickly in geological terms, in less than a million years".

"It was not a gradual, slow process over tens of millions of years as previously thought".

David said it seemed unlikely that warm-bloodedness would begin around the extinction event 252 million years ago, because global temperatures were extremely hot then.

That would have been a disadvantage for warm-blooded animals -- but they could have thrived as temperatures cooled in the following millions of years.

"Being an endotherm allows you to be more independent of the whims of the climate, to run faster, run longer, explore different habitats, explore the night, explore polar regions, make long migrations," Araujo said.

"There were a lot of innovations at the time that started to define what a mammal is -- but also ultimately what a human being would be."

G.George--TFWP