The Fort Worth Press - Scientists find chemical that stops locust cannibalism

USD -
AED 3.673042
AFN 68.858766
ALL 88.802398
AMD 387.151613
ANG 1.799401
AOA 927.769041
ARS 961.359012
AUD 1.46886
AWG 1.8
AZN 1.70397
BAM 1.749922
BBD 2.015926
BDT 119.312844
BGN 1.750011
BHD 0.376236
BIF 2894.376594
BMD 1
BND 1.290118
BOB 6.899298
BRL 5.418691
BSD 0.998434
BTN 83.448933
BWP 13.198228
BYN 3.267481
BYR 19600
BZD 2.012526
CAD 1.35775
CDF 2871.000362
CHF 0.850342
CLF 0.033728
CLP 930.650396
CNY 7.051904
CNH 7.043005
COP 4153.983805
CRC 518.051268
CUC 1
CUP 26.5
CVE 98.657898
CZK 22.451404
DJF 177.79269
DKK 6.68204
DOP 59.929316
DZD 132.138863
EGP 48.452557
ERN 15
ETB 115.859974
EUR 0.894904
FJD 2.200804
FKP 0.761559
GBP 0.75092
GEL 2.730391
GGP 0.761559
GHS 15.696327
GIP 0.761559
GMD 68.503851
GNF 8626.135194
GTQ 7.71798
GYD 208.866819
HKD 7.790095
HNL 24.767145
HRK 6.799011
HTG 131.740706
HUF 352.160388
IDR 15160.8
ILS 3.777515
IMP 0.761559
INR 83.48045
IQD 1307.922874
IRR 42092.503816
ISK 136.260386
JEP 0.761559
JMD 156.86485
JOD 0.708504
JPY 143.90404
KES 128.797029
KGS 84.238504
KHR 4054.936698
KMF 441.350384
KPW 899.999433
KRW 1332.490383
KWD 0.30507
KYD 0.832014
KZT 478.691898
LAK 22047.152507
LBP 89409.743659
LKR 304.621304
LRD 199.686843
LSL 17.527759
LTL 2.95274
LVL 0.60489
LYD 4.741198
MAD 9.681206
MDL 17.42227
MGA 4515.724959
MKD 55.129065
MMK 3247.960992
MNT 3397.999955
MOP 8.014495
MRU 39.677896
MUR 45.880378
MVR 15.360378
MWK 1731.132286
MXN 19.416804
MYR 4.205039
MZN 63.850377
NAD 17.527759
NGN 1639.450377
NIO 36.746745
NOK 10.482404
NPR 133.518543
NZD 1.603206
OMR 0.384512
PAB 0.998434
PEN 3.742316
PGK 3.9082
PHP 55.653038
PKR 277.414933
PLN 3.82535
PYG 7789.558449
QAR 3.640048
RON 4.449904
RSD 104.886038
RUB 92.240594
RWF 1345.94909
SAR 3.752452
SBD 8.306937
SCR 13.046124
SDG 601.503676
SEK 10.170404
SGD 1.291304
SHP 0.761559
SLE 22.847303
SLL 20969.494858
SOS 570.572183
SRD 30.205038
STD 20697.981008
SVC 8.736188
SYP 2512.529936
SZL 17.534112
THB 32.927038
TJS 10.61334
TMT 3.5
TND 3.025276
TOP 2.342104
TRY 34.124875
TTD 6.791035
TWD 31.981038
TZS 2725.719143
UAH 41.267749
UGX 3698.832371
UYU 41.256207
UZS 12705.229723
VEF 3622552.534434
VES 36.777762
VND 24605
VUV 118.722009
WST 2.797463
XAF 586.90735
XAG 0.03211
XAU 0.000381
XCD 2.70255
XDR 0.739945
XOF 586.90735
XPF 106.706035
YER 250.325037
ZAR 17.38465
ZMK 9001.203587
ZMW 26.433141
ZWL 321.999592
  • RBGPF

    58.8300

    58.83

    +100%

  • NGG

    0.7200

    69.55

    +1.04%

  • RELX

    -0.1400

    47.99

    -0.29%

  • GSK

    -0.8200

    40.8

    -2.01%

  • BTI

    -0.1300

    37.44

    -0.35%

  • AZN

    -0.5200

    78.38

    -0.66%

  • RYCEF

    0.0200

    6.97

    +0.29%

  • BP

    -0.1200

    32.64

    -0.37%

  • VOD

    -0.0500

    10.01

    -0.5%

  • CMSC

    0.0300

    25.15

    +0.12%

  • BCC

    -7.1900

    137.5

    -5.23%

  • BCE

    -0.1500

    35.04

    -0.43%

  • CMSD

    0.0100

    25.02

    +0.04%

  • RIO

    -1.6100

    63.57

    -2.53%

  • JRI

    -0.0800

    13.32

    -0.6%

  • SCS

    -0.3900

    12.92

    -3.02%

Scientists find chemical that stops locust cannibalism
Scientists find chemical that stops locust cannibalism / Photo: © AFP/File

Scientists find chemical that stops locust cannibalism

Plagues of locusts that darken the skies and devastate all things that grow have been recorded since Biblical times, and today threaten the food security of millions of people across Asia and Africa.

Text size:

But a new finding reported Thursday -- of a pheromone emitted by the insects to avoid being cannibalized when in a swarm -- could potentially pave the way to reining in the voracious pests.

Study leader Bill Hansson, director of the Max Planck Institute's Department of Evolutionary Neuroethology, told AFP that the new paper, published in Science, built on prior research that found swarms are directed not by cooperation -- but actually the threat of consumption by other locusts.

While repulsive to modern humans, cannibalism is rife in nature -- from lions that kill and devour cubs that are not theirs, to foxes that consume dead kin for energy.

For locusts, cannibalism is thought to serve an important ecological purpose.

Migratory locusts (Locusta migratoria) occur in different forms and behave so differently that they were, until recently, thought to be entirely different species.

Most of the time, they exist in a "solitary" phase keeping to themselves and eating comparatively little, like timid grasshoppers.

But when their population density increases due to rainfall and temporarily good breeding conditions, which is followed by food scarcity, they undergo major behavioral changes due to a rush of hormones that rev them up, causing them to aggregate in swarms and become more aggressive.

This is known as the "gregarious" phase and it's thought the fear of cannibalism helps keep the swarm moving in the same direction, from an area of lower to higher food concentration, according to 2020 research by Iain Couzin of the Max Planck Institute for Animal Research.

Hansson explained that "locusts eat each other from behind."

"So if you stop moving, you get eaten by the other, and that got us thinking that almost every animal who is under threat has some kind of countermeasure."

In painstaking experiments that took four years to complete, Hansson's team first established that cannibalism rates did indeed increase as the number of "gregarious" locusts kept in a cage went up, proving in the lab what Couzin had observed in the field in Africa (the triggering point was around 50 in a cage).

Next, they compared the odors emitted by solitary and gregarious locusts, finding 17 smells produced exclusively during the gregarious phase.

Of these, one chemical, known as phenylacetonitrile (PAN), was found to repel other locusts in behavioral tests.

PAN is involved in the synthesis of a potent toxin sometimes produced by gregarious locusts -- hydrogen cyanide -- so emitting PAN appeared to fit as the signal to tell others to back off.

- Genome editing -

To confirm the finding, they used CRISPR editing to genetically modify locusts so they could no longer produce PAN, which in turn made them more vulnerable to cannibalism.

For further confirmation, they tested dozens of the locusts' olfactory receptors, eventually landing on one that was very sensitive to PAN.

When they gene edited locusts to no longer produce this receptor, the modified locusts became more cannibalistic.

Writing in a related commentary in Science, researchers Iain Couzin and Einat Couzin-Fuchs said the discovery helped shed light on the "intricate balance" between the mechanisms that cause migratory locusts to group together versus compete with one another.

Future methods of locust control could therefore use technology that tips that delicate balance towards more competition, but Hansson cautioned: "You don't want to eradicate the species."

"If we could diminish the size of the swarms, steer them to areas where we are not growing our crops, then a lot could be gained," he added.

B.Martinez--TFWP