The Fort Worth Press - Nobel physics winner wanted to topple quantum theory he vindicated

USD -
AED 3.673028
AFN 68.999894
ALL 89.087918
AMD 387.750172
ANG 1.804889
AOA 928.494993
ARS 962.749702
AUD 1.465846
AWG 1.8
AZN 1.701522
BAM 1.753412
BBD 2.022028
BDT 119.677429
BGN 1.76065
BHD 0.376858
BIF 2894
BMD 1
BND 1.293151
BOB 6.920294
BRL 5.430203
BSD 1.001511
BTN 83.756981
BWP 13.175564
BYN 3.277435
BYR 19600
BZD 2.018612
CAD 1.355145
CDF 2871.000384
CHF 0.84729
CLF 0.033735
CLP 930.860338
CNY 7.06801
CNH 7.070165
COP 4164.25
CRC 518.757564
CUC 1
CUP 26.5
CVE 99.250592
CZK 22.480044
DJF 177.720107
DKK 6.68207
DOP 60.199865
DZD 132.544665
EGP 48.529301
ERN 15
ETB 115.255129
EUR 0.89579
FJD 2.19785
FKP 0.761559
GBP 0.752735
GEL 2.729752
GGP 0.761559
GHS 15.699112
GIP 0.761559
GMD 68.503104
GNF 8652.505606
GTQ 7.741513
GYD 209.457218
HKD 7.794225
HNL 24.842772
HRK 6.799011
HTG 131.977784
HUF 353.015982
IDR 15176
ILS 3.75257
IMP 0.761559
INR 83.62355
IQD 1310
IRR 42092.499098
ISK 136.440027
JEP 0.761559
JMD 157.339131
JOD 0.708698
JPY 142.808499
KES 129.000262
KGS 84.275015
KHR 4069.99968
KMF 441.350455
KPW 899.999433
KRW 1328.279704
KWD 0.30494
KYD 0.834476
KZT 479.593026
LAK 22084.999971
LBP 89600.000199
LKR 304.846178
LRD 194.250287
LSL 17.495312
LTL 2.95274
LVL 0.60489
LYD 4.770379
MAD 9.711993
MDL 17.473892
MGA 4512.201682
MKD 55.240768
MMK 3247.960992
MNT 3397.999955
MOP 8.038636
MRU 39.714984
MUR 45.870267
MVR 15.359885
MWK 1736.000219
MXN 19.287101
MYR 4.209995
MZN 63.850089
NAD 17.500514
NGN 1640.319462
NIO 36.851777
NOK 10.482865
NPR 134.027245
NZD 1.600218
OMR 0.38496
PAB 1.001511
PEN 3.744984
PGK 3.976063
PHP 55.582497
PKR 278.532654
PLN 3.827835
PYG 7817.718069
QAR 3.651075
RON 4.456404
RSD 104.874024
RUB 92.174634
RWF 1348.572453
SAR 3.752516
SBD 8.320763
SCR 13.619641
SDG 601.498562
SEK 10.155635
SGD 1.29162
SHP 0.761559
SLE 22.847303
SLL 20969.494858
SOS 572.343029
SRD 29.853005
STD 20697.981008
SVC 8.762579
SYP 2512.529936
SZL 17.500595
THB 33.150078
TJS 10.644256
TMT 3.5
TND 3.024001
TOP 2.349805
TRY 33.998781
TTD 6.806508
TWD 31.929522
TZS 2724.439511
UAH 41.500415
UGX 3718.795247
UYU 41.141269
UZS 12758.480028
VEF 3622552.534434
VES 36.72403
VND 24580
VUV 118.722009
WST 2.797463
XAF 588.099177
XAG 0.032172
XAU 0.000386
XCD 2.70255
XDR 0.742235
XOF 588.078087
XPF 107.29912
YER 250.324993
ZAR 17.50259
ZMK 9001.19797
ZMW 26.062595
ZWL 321.999592
  • RBGPF

    3.5000

    60.5

    +5.79%

  • NGG

    -1.2200

    68.83

    -1.77%

  • RYCEF

    0.4000

    6.95

    +5.76%

  • VOD

    -0.1700

    10.06

    -1.69%

  • AZN

    0.3200

    78.9

    +0.41%

  • CMSC

    0.0650

    25.12

    +0.26%

  • SCS

    -0.8000

    13.31

    -6.01%

  • GSK

    -0.8100

    41.62

    -1.95%

  • RELX

    0.7600

    48.13

    +1.58%

  • BCC

    7.6300

    144.69

    +5.27%

  • BTI

    -0.3100

    37.57

    -0.83%

  • RIO

    2.2700

    65.18

    +3.48%

  • JRI

    -0.0400

    13.4

    -0.3%

  • CMSD

    0.0300

    25.01

    +0.12%

  • BCE

    -0.4200

    35.19

    -1.19%

  • BP

    0.3300

    32.76

    +1.01%

Nobel physics winner wanted to topple quantum theory he vindicated
Nobel physics winner wanted to topple quantum theory he vindicated / Photo: © AFP

Nobel physics winner wanted to topple quantum theory he vindicated

American physicist John Clauser won the 2022 Nobel Prize for a groundbreaking experiment vindicating quantum mechanics -- a fundamental theory governing the subatomic world that is today the foundation for an emerging class of ultra-powerful computers.

Text size:

But when he carried out his work in the 1970s, Clauser was actually hoping for the opposite result: to upend the field and prove Albert Einstein had been right to dismiss it, he told AFP in an interview.

"The truth is that I strongly hoped that Einstein would win, which would mean that quantum mechanics was giving incorrect predictions," the 79-year-old said, speaking by telephone from his home in Walnut Creek, just outside San Francisco.

Born in Pasadena in 1942, Clauser credits his father, an engineer who designed planes in the war and founded the aeronautics department at Johns Hopkins University in Baltimore, for instilling in him a lifelong love of science.

"I used to wander around his laboratory and say 'Wow, oh boy, when I grow up I want to be a scientist so I can play with these fun toys too.'"

As a graduate student at Columbia in the mid-1960s, he grew interested in quantum physics alongside his thesis work on radio astronomy.

- Quantum entanglement -

According to quantum mechanics, two or more particles can exist in what's called an entangled state -- what happens to one in an entangled pair determines what happens to the other, no matter their distance.

The fact that this occurred instantly contradicted Einstein's theory of relativity which held that nothing -- including information -- can travel faster than the speed of light.

In 1935 he dismissed this element of quantum entanglement -- called nonlocality -- as "spooky action at a distance."

Einstein instead believed that "hidden variables" that instructed the particles what state to take must be at play, placing him at odds with his great friend but intellectual adversary Niels Bohr, a founding father of quantum theory.

In 1964, the Northern Irish physicist John Bell proposed a theoretical way to measure whether there were in fact hidden variables inside quantum particles. Clauser realized he could resolve the long standing Bohr-Einstein debate if he could create the right experiment.

"My thesis advisor thought it was a distraction from my work in astrophysics," he recalled, but undeterred, he wrote to Bell, who encouraged him to take up the idea.

It wasn't until Clauser had completed his doctorate and taken up a job at UC Berkeley that he was actually able to start working on the experiment, along with collaborator Stuart Freedman.

They focused a laser on calcium atoms, making it emit particles of entangled photon pairs that shot off in opposite directions, and used filters set to the side to measure whether they were correlated.

After hundreds of thousands of runs, they found the pairs correlated more than Einstein would have predicted, proving the reality of "spooky action" with hard data.

At the time, leading lights of the field were unimpressed, said Clauser, including the renowned physicist Richard Feynman who told him the work was "totally silly, you're wasting everybody's time and money" and threw him out his office.

Questioning the foundation of quantum mechanics was deemed unnecessary.

- Quantum computing -

That wasn't the view of the Nobel committee, who awarded Clauser, Alain Aspect of France, and Anton Zeilinger of Austria the world's most prestigious science prize for their pioneering work in advancing the field.

"It took a long time for people to realize the importance of the work," chuckled Clauser.

"But I suppose it is a certain vindication, everyone was telling me it was silly."

Einstein's theory had more appeal to Clauser than Bohr's, which he confessed to not fully grasping.

But over time, he came to realize the true value of his and his co-winners' experiments. Demonstrating that a single bit of information can be distributed through space is today at the core of quantum computers.

Clauser pointed to China's quantum-encrypted Micius communications satellite, which relies on entangled photons thousands of kilometers apart.

"We did not prove what quantum mechanics is -- we proved what quantum mechanics isn't," he said, "and knowing what it is not then has practical applications."

J.P.Estrada--TFWP