The Fort Worth Press - Tracing uncertainty: Google harnesses quantum mechanics at California lab

USD -
AED 3.673028
AFN 68.999894
ALL 89.087918
AMD 387.750172
ANG 1.804889
AOA 928.494993
ARS 962.749702
AUD 1.465846
AWG 1.8
AZN 1.701522
BAM 1.753412
BBD 2.022028
BDT 119.677429
BGN 1.76065
BHD 0.376858
BIF 2894
BMD 1
BND 1.293151
BOB 6.920294
BRL 5.430203
BSD 1.001511
BTN 83.756981
BWP 13.175564
BYN 3.277435
BYR 19600
BZD 2.018612
CAD 1.355145
CDF 2871.000384
CHF 0.84729
CLF 0.033735
CLP 930.860338
CNY 7.06801
CNH 7.070165
COP 4164.25
CRC 518.757564
CUC 1
CUP 26.5
CVE 99.250592
CZK 22.480044
DJF 177.720107
DKK 6.68207
DOP 60.199865
DZD 132.544665
EGP 48.529301
ERN 15
ETB 115.255129
EUR 0.89579
FJD 2.19785
FKP 0.761559
GBP 0.752735
GEL 2.729752
GGP 0.761559
GHS 15.699112
GIP 0.761559
GMD 68.503104
GNF 8652.505606
GTQ 7.741513
GYD 209.457218
HKD 7.794225
HNL 24.842772
HRK 6.799011
HTG 131.977784
HUF 353.015982
IDR 15176
ILS 3.75257
IMP 0.761559
INR 83.62355
IQD 1310
IRR 42092.499098
ISK 136.440027
JEP 0.761559
JMD 157.339131
JOD 0.708698
JPY 142.808499
KES 129.000262
KGS 84.275015
KHR 4069.99968
KMF 441.350455
KPW 899.999433
KRW 1328.279704
KWD 0.30494
KYD 0.834476
KZT 479.593026
LAK 22084.999971
LBP 89600.000199
LKR 304.846178
LRD 194.250287
LSL 17.495312
LTL 2.95274
LVL 0.60489
LYD 4.770379
MAD 9.711993
MDL 17.473892
MGA 4512.201682
MKD 55.240768
MMK 3247.960992
MNT 3397.999955
MOP 8.038636
MRU 39.714984
MUR 45.870267
MVR 15.359885
MWK 1736.000219
MXN 19.287101
MYR 4.209995
MZN 63.850089
NAD 17.500514
NGN 1640.319462
NIO 36.851777
NOK 10.482865
NPR 134.027245
NZD 1.600218
OMR 0.38496
PAB 1.001511
PEN 3.744984
PGK 3.976063
PHP 55.582497
PKR 278.532654
PLN 3.827835
PYG 7817.718069
QAR 3.651075
RON 4.456404
RSD 104.874024
RUB 92.174634
RWF 1348.572453
SAR 3.752516
SBD 8.320763
SCR 13.619641
SDG 601.498562
SEK 10.155635
SGD 1.29162
SHP 0.761559
SLE 22.847303
SLL 20969.494858
SOS 572.343029
SRD 29.853005
STD 20697.981008
SVC 8.762579
SYP 2512.529936
SZL 17.500595
THB 33.150078
TJS 10.644256
TMT 3.5
TND 3.024001
TOP 2.349805
TRY 33.998781
TTD 6.806508
TWD 31.929522
TZS 2724.439511
UAH 41.500415
UGX 3718.795247
UYU 41.141269
UZS 12758.480028
VEF 3622552.534434
VES 36.72403
VND 24580
VUV 118.722009
WST 2.797463
XAF 588.099177
XAG 0.032172
XAU 0.000386
XCD 2.70255
XDR 0.742235
XOF 588.078087
XPF 107.29912
YER 250.324993
ZAR 17.50259
ZMK 9001.19797
ZMW 26.062595
ZWL 321.999592
  • CMSC

    0.0650

    25.12

    +0.26%

  • GSK

    -0.8100

    41.62

    -1.95%

  • BCC

    7.6300

    144.69

    +5.27%

  • AZN

    0.3200

    78.9

    +0.41%

  • BCE

    -0.4200

    35.19

    -1.19%

  • RIO

    2.2700

    65.18

    +3.48%

  • NGG

    -1.2200

    68.83

    -1.77%

  • CMSD

    0.0300

    25.01

    +0.12%

  • RBGPF

    3.5000

    60.5

    +5.79%

  • BTI

    -0.3100

    37.57

    -0.83%

  • SCS

    -0.8000

    13.31

    -6.01%

  • JRI

    -0.0400

    13.4

    -0.3%

  • RYCEF

    0.4000

    6.95

    +5.76%

  • RELX

    0.7600

    48.13

    +1.58%

  • BP

    0.3300

    32.76

    +1.01%

  • VOD

    -0.1700

    10.06

    -1.69%

Tracing uncertainty: Google harnesses quantum mechanics at California lab
Tracing uncertainty: Google harnesses quantum mechanics at California lab / Photo: © AFP

Tracing uncertainty: Google harnesses quantum mechanics at California lab

Outside, balmy September sunshine warms an idyllic coast, as California basks in yet another perfect day.

Text size:

Inside, it's minus 460 Fahrenheit (-273 Celsius) in some spots, pockets of cold that bristle with the impossible physics of quantum mechanics -- a science in which things can simultaneously exist, not exist and also be something in between.

This is Google's Quantum AI laboratory, where dozens of super-smart people labor in an office kitted out with climbing walls and electric bikes to shape the next generation of computers -- a generation that will be unlike anything users currently have in their pockets or offices.

"It is a new type of computer that uses quantum mechanics to do computations and allows us... to solve problems that would otherwise be impossible," explains Erik Lucero, lead engineer at the campus near Santa Barbara.

"It's not going to replace your mobile phone, your desktop; it's going to be working in parallel with those things."

Quantum mechanics is a field of research that scientists say could be used one day to help limit global warming, design city traffic systems or develop powerful new drugs.

The promises are so great that governments, tech giants and start-ups around the world are investing billions of dollars in it, employing some of the biggest brains around.

- Schrodinger's cat -

Old fashioned computing is built on the idea of binary certainty: tens of thousands of "bits" of data that are each definitely either "on" or "off," represented by either a one or a zero.

Quantum computing uses uncertainty: its "qubits" can exist in a state of both one-ness and zero-ness in what is called a superposition.

The most famous illustration of a quantum superposition is Schrodinger's cat -- a hypothetical animal locked in a box with a flask of poison which may or may not shatter.

While the box is shut, the cat is simultaneously alive and dead. But once you interfere with the quantum state and open the box, the question of the cat's life or death is resolved.

Quantum computers use this uncertainty to perform lots of seemingly contradictory calculations at the same time -- a bit like being able to go down every possible route in a maze all at once, instead of trying each one in series until you find the right path.

The difficulty for quantum computer designers is getting these qubits to maintain their superposition long enough to make a calculation.

As soon as something interferes with them -- noise, muck, the wrong temperature -- the superposition collapses, and you're left with a random and likely nonsensical answer.

The quantum computer Google showed off to journalists resembles a steampunk wedding cake hung upside-down from a support structure.

Each layer of metal and curved wires gets progressively colder, down to the final stage, where the palm-sized processor is cooled to just 10 Millikelvin, or about -460 Fahrenheit (-273 Celsius).

That temperature -- only a shade above absolute zero, the lowest temperature possible in the universe -- is vital for the superconductivity Google's design relies on.

While the layer-cake computer is not huge -- about half a person high -- a decent amount of lab space is taken up with the equipment to cool it -- pipes whoosh overhead with helium dilutions compressing and expanding, using the same process that keeps your refrigerator cold.

- Future -

But... what does it all actually do?

Well, says Daniel Lidar, an expert in quantum systems at the University of Southern California, it's a field that promises much when it matures, but which is still a toddler.

"We've learned how to crawl but we've certainly not yet learned how to how to walk or jump or run," he told AFP.

The key to its growth will be solving the problem of the superpositional collapses -- the opening of the cat's box -- to allow for meaningful calculations.

As this process of error correction improves, problems such as city traffic optimization, which is fiendishly hard on a classical computer because of the number of independent variables involved -- the cars themselves -- could come within reach, said Lidar.

"On (an error-corrected) quantum computer, you could solve that problem," he said.

For Lucero and his colleagues, these future possibilities are worth the brain ache.

"Quantum mechanics is one of the best theories that we have today to experience nature. This is a computer that speaks the language of nature.

"And if we want to go out and figure out these really challenging problems, to help save our planet, and things like climate change, than having a computer that can do exactly that, I'd want that."

S.Palmer--TFWP