The Fort Worth Press - Direct impact or nuclear weapons? How to save Earth from an asteroid

USD -
AED 3.673037
AFN 69.382248
ALL 89.087918
AMD 387.74983
ANG 1.804889
AOA 926.842968
ARS 962.762992
AUD 1.470686
AWG 1.80125
AZN 1.701482
BAM 1.753412
BBD 2.022028
BDT 119.677429
BGN 1.76065
BHD 0.376834
BIF 2902.514455
BMD 1
BND 1.293151
BOB 6.920294
BRL 5.415977
BSD 1.001511
BTN 83.756981
BWP 13.175564
BYN 3.277435
BYR 19600
BZD 2.018612
CAD 1.35814
CDF 2870.000027
CHF 0.84791
CLF 0.033747
CLP 931.169811
CNY 7.068699
CNH 7.074965
COP 4177.88
CRC 518.757564
CUC 1
CUP 26.5
CVE 98.854697
CZK 22.553029
DJF 178.315629
DKK 6.70311
DOP 60.121121
DZD 132.549161
EGP 48.527095
ERN 15
ETB 115.255129
EUR 0.898699
FJD 2.201249
FKP 0.761559
GBP 0.754585
GEL 2.682499
GGP 0.761559
GHS 15.773501
GIP 0.761559
GMD 69.000314
GNF 8653.281514
GTQ 7.741513
GYD 209.457218
HKD 7.79473
HNL 24.842772
HRK 6.799011
HTG 131.977784
HUF 354.168009
IDR 15199.35
ILS 3.768145
IMP 0.761559
INR 83.63905
IQD 1311.8884
IRR 42105.000093
ISK 137.040021
JEP 0.761559
JMD 157.339131
JOD 0.708697
JPY 142.913502
KES 129.189463
KGS 84.27502
KHR 4064.964116
KMF 442.502368
KPW 899.999433
KRW 1330.884964
KWD 0.30503
KYD 0.834476
KZT 479.593026
LAK 22113.742419
LBP 89681.239718
LKR 304.846178
LRD 200.268926
LSL 17.448842
LTL 2.95274
LVL 0.60489
LYD 4.770379
MAD 9.711993
MDL 17.473892
MGA 4512.201682
MKD 55.240768
MMK 3247.960992
MNT 3397.999955
MOP 8.038636
MRU 39.642644
MUR 45.869908
MVR 15.350156
MWK 1736.363229
MXN 19.342215
MYR 4.20954
MZN 63.898241
NAD 17.448842
NGN 1640.320281
NIO 36.851777
NOK 10.509397
NPR 134.027245
NZD 1.604711
OMR 0.38497
PAB 1.001511
PEN 3.759767
PGK 3.976063
PHP 55.690995
PKR 278.532654
PLN 3.83969
PYG 7817.718069
QAR 3.651075
RON 4.469802
RSD 105.201998
RUB 92.827918
RWF 1348.572453
SAR 3.752625
SBD 8.320763
SCR 13.626575
SDG 601.523004
SEK 10.182245
SGD 1.293565
SHP 0.761559
SLE 22.847303
SLL 20969.494858
SOS 572.343029
SRD 29.852974
STD 20697.981008
SVC 8.762579
SYP 2512.529936
SZL 17.433553
THB 33.195964
TJS 10.644256
TMT 3.51
TND 3.033283
TOP 2.349799
TRY 34.035525
TTD 6.806508
TWD 31.981979
TZS 2724.439905
UAH 41.500415
UGX 3718.795247
UYU 41.141269
UZS 12758.480028
VEF 3622552.534434
VES 36.732281
VND 24580
VUV 118.722009
WST 2.797463
XAF 588.099177
XAG 0.032399
XAU 0.000387
XCD 2.70255
XDR 0.742235
XOF 588.078087
XPF 106.919846
YER 250.350183
ZAR 17.478315
ZMK 9001.205037
ZMW 26.062595
ZWL 321.999592
  • RBGPF

    3.5000

    60.5

    +5.79%

  • CMSC

    -0.0350

    25.02

    -0.14%

  • BP

    0.5210

    32.951

    +1.58%

  • BCC

    5.7200

    142.78

    +4.01%

  • SCS

    -0.9000

    13.21

    -6.81%

  • GSK

    -0.4450

    41.985

    -1.06%

  • BTI

    -0.2550

    37.625

    -0.68%

  • NGG

    -1.1250

    68.925

    -1.63%

  • CMSD

    0.0250

    25.005

    +0.1%

  • RELX

    0.7400

    48.11

    +1.54%

  • RIO

    2.3200

    65.23

    +3.56%

  • RYCEF

    0.3800

    6.93

    +5.48%

  • JRI

    -0.0400

    13.4

    -0.3%

  • AZN

    0.6900

    79.27

    +0.87%

  • VOD

    -0.1650

    10.065

    -1.64%

  • BCE

    -0.1900

    35.42

    -0.54%

Direct impact or nuclear weapons? How to save Earth from an asteroid
Direct impact or nuclear weapons? How to save Earth from an asteroid / Photo: © AFP

Direct impact or nuclear weapons? How to save Earth from an asteroid

NASA's DART mission to test deflecting an asteroid using "kinetic impact" with a spaceship is just one way to defend planet Earth from an approaching object -- and for now, the only method possible with current technology.

Text size:

The operation is like playing billiards in space, using Newton's laws of motion to guide us.

If an asteroid threat to Earth were real, a mission might need to be launched a year or two in advance to take on a small asteroid, or decades ahead of projected impact for larger objects hundreds of kilometers in diameter that could prove catastrophic to the planet.

Or, a larger object might require hits with multiple spacecraft.

"This demonstration will start to add tools to our toolbox of methods that could be used in the future," said Lindley Johnson, NASA's planetary defense office, in a recent briefing.

Other proposed ideas have included a futuristic-sounding "gravity tractor," or a mission to blow up the hypothetical object with a nuclear weapon -- the method preferred by Hollywood.

- Gravity tractor -

Should an approaching object be detected early -- years or decades before it would hit Earth -- a spaceship could be sent to fly alongside it for long enough to divert its path via using the ship's gravitational pull, creating a so-called gravity tractor.

This method "has the virtue that the method of moving the asteroid is totally well understood -- it's gravity and we know how gravity works," Tom Statler, a DART program scientist at NASA said at a briefing last November when DART launched.

The mass of the spacecraft however would be a limiting factor -- and gravity tractors would be less effective for asteroids more than 500 meters in diameter, which are the very ones that pose the greatest threat.

In a 2017 paper, NASA engineers proposed a way to overcome this snag: by having the spacecraft scoop material from the asteroid to enhance its own mass, and thus, gravity.

But none of these concepts have been tried, and would need decades to build, launch and test.

- Nuclear detonation -

Another option: launching nuclear explosives to redirect or destroy an asteroid.

"This may be the only strategy that would be effective for the largest and most dangerous 'planet-killer' asteroids (more than one kilometer in diameter)," a NASA article on the subject says, adding such a strike might be useful as a "last resort" in case the other methods fail.

But these weapons are geopolitically controversial and technically banned from use in outer space.

Lori Glaze, NASA's planetary science division director said in a 2021 briefing that the agency believed the best way to deploy the weapons would be at a distance from an asteroid, in order to impart force on the object without blowing it into smaller pieces that could then multiply the threat to Earth.

A 2018 paper published in the "Journal of Experimental and Theoretical Physics" by Russian scientists looked at the direct detonation scenario.

E. Yu. Aristova and colleagues built miniature asteroid models and blasted them with lasers. Their experiments showed that blowing up a 200-meter asteroid would require a bomb 200 times as powerful as the one that exploded over Hiroshima in 1945.

They also said it would be most effective to drill into the asteroid, bury the bomb, then blow it up -- just like in the movie Armageddon.

P.Navarro--TFWP