The Fort Worth Press - An overview of NASA's Artemis 1 mission to the Moon

USD -
AED 3.672946
AFN 69.500052
ALL 89.129913
AMD 387.090215
ANG 1.802797
AOA 929.493843
ARS 962.2544
AUD 1.478395
AWG 1.80125
AZN 1.697576
BAM 1.757785
BBD 2.019754
BDT 119.530148
BGN 1.758795
BHD 0.376819
BIF 2893
BMD 1
BND 1.293973
BOB 6.912202
BRL 5.462501
BSD 1.000306
BTN 83.75619
BWP 13.214754
BYN 3.273714
BYR 19600
BZD 2.016321
CAD 1.361255
CDF 2869.999734
CHF 0.84793
CLF 0.033731
CLP 930.749609
CNY 7.081982
CNH 7.101025
COP 4190.25
CRC 517.763578
CUC 1
CUP 26.5
CVE 99.497232
CZK 22.57345
DJF 177.71978
DKK 6.715695
DOP 60.049852
DZD 132.140158
EGP 48.528199
ERN 15
ETB 116.201822
EUR 0.90028
FJD 2.207098
FKP 0.761559
GBP 0.757795
GEL 2.682496
GGP 0.761559
GHS 15.709672
GIP 0.761559
GMD 69.000219
GNF 8649.999791
GTQ 7.737314
GYD 209.343291
HKD 7.793155
HNL 24.960336
HRK 6.799011
HTG 131.990006
HUF 354.9825
IDR 15303
ILS 3.77925
IMP 0.761559
INR 83.76325
IQD 1310
IRR 42105.000404
ISK 137.109473
JEP 0.761559
JMD 157.156338
JOD 0.7087
JPY 142.903497
KES 129.000055
KGS 84.362196
KHR 4070.000137
KMF 442.484777
KPW 899.999433
KRW 1328.885027
KWD 0.30493
KYD 0.833618
KZT 479.135773
LAK 22110.000269
LBP 89550.000143
LKR 303.443999
LRD 195.000207
LSL 17.5898
LTL 2.95274
LVL 0.60489
LYD 4.75502
MAD 9.75675
MDL 17.380597
MGA 4559.999503
MKD 55.372336
MMK 3247.960992
MNT 3397.999955
MOP 8.029155
MRU 39.698872
MUR 45.849845
MVR 15.349656
MWK 1735.495602
MXN 19.264751
MYR 4.249959
MZN 63.898241
NAD 17.589914
NGN 1639.430101
NIO 36.759447
NOK 10.595195
NPR 134.016106
NZD 1.610325
OMR 0.384965
PAB 1.000297
PEN 3.77515
PGK 3.92785
PHP 55.822505
PKR 278.150478
PLN 3.847005
PYG 7799.327737
QAR 3.64075
RON 4.479498
RSD 105.386004
RUB 93.623323
RWF 1340
SAR 3.752957
SBD 8.320763
SCR 13.467608
SDG 601.50018
SEK 10.211785
SGD 1.29708
SHP 0.761559
SLE 22.847303
SLL 20969.494858
SOS 571.000232
SRD 30.072499
STD 20697.981008
SVC 8.752662
SYP 2512.529936
SZL 17.590181
THB 33.410165
TJS 10.653204
TMT 3.51
TND 3.030985
TOP 2.3498
TRY 34.067403
TTD 6.794467
TWD 31.967986
TZS 2724.43999
UAH 41.467525
UGX 3720.813186
UYU 40.990752
UZS 12745.000347
VEF 3622552.534434
VES 36.733251
VND 24625
VUV 118.722009
WST 2.797463
XAF 589.560677
XAG 0.033144
XAU 0.000391
XCD 2.70255
XDR 0.741403
XOF 589.50093
XPF 106.250192
YER 250.350237
ZAR 17.552971
ZMK 9001.197294
ZMW 26.483144
ZWL 321.999592
  • RBGPF

    3.5000

    60.5

    +5.79%

  • RYCEF

    0.0900

    6.55

    +1.37%

  • VOD

    0.0500

    10.23

    +0.49%

  • CMSC

    0.0050

    25.055

    +0.02%

  • RELX

    -0.3900

    47.37

    -0.82%

  • GSK

    -0.1300

    42.43

    -0.31%

  • RIO

    -0.0100

    62.91

    -0.02%

  • SCS

    0.1000

    14.11

    +0.71%

  • BTI

    -0.1300

    37.88

    -0.34%

  • AZN

    0.0500

    78.58

    +0.06%

  • BCC

    1.8200

    137.06

    +1.33%

  • NGG

    -0.3200

    70.05

    -0.46%

  • JRI

    0.0600

    13.44

    +0.45%

  • CMSD

    -0.0300

    24.98

    -0.12%

  • BCE

    1.1000

    35.61

    +3.09%

  • BP

    -0.1200

    32.43

    -0.37%

An overview of NASA's Artemis 1 mission to the Moon
An overview of NASA's Artemis 1 mission to the Moon / Photo: © AFP/File

An overview of NASA's Artemis 1 mission to the Moon

NASA's Artemis 1 mission, scheduled to take off on Monday, is a 42-day voyage beyond the far side of the Moon and back.

Text size:

The meticulously choreographed uncrewed flight should yield spectacular images as well as valuable scientific data.

- Blastoff -

The giant Space Launch System rocket will make its maiden flight from Launch Complex 39B at Kennedy Space Center in Florida.

Its four RS-25 engines, with two white boosters on either side, will produce 8.8 million pounds (39 meganewtons) of thrust -- 15 percent more than the Apollo program's Saturn V rocket.

After two minutes, the thrusters will fall back into the Atlantic Ocean.

After eight minutes, the core stage, orange in color, will fall away in turn, leaving the Orion crew capsule attached to the interim cryogenic propulsion stage.

This stage will circle the Earth once, put Orion on course for the Moon, and drop away around 90 minutes after takeoff.

- Trajectory -

All that remains is Orion, which will fly astronauts in the future and is powered by a service module built by the European Space Agency.

It will take several days to reach the Moon, flying around 60 miles (100 kilometers) at closest approach.

"It's going to be spectacular. We'll be holding our breath," said mission flight director Rick LaBrode.

The capsule will fire its engines to get to a distant retrograde orbit (DRO) 40,000 miles beyond the Moon, a distance record for a spacecraft rated to carry humans.

"Distant" relates to high altitude, while "retrograde" refers to the fact Orion will go around the Moon the opposite direction to the Moon's orbit around the Earth.

DRO is a stable orbit because objects are balanced between the gravitational pulls of two large masses.

After passing by the Moon to take advantage of its gravitational assistance, Orion will begin the return journey.

- Journey home -

The mission's primary objective is to test the capsule's heat shield, the largest ever built, 16 feet (five meters) in diameter.

On its return to the Earth's atmosphere, it will have to withstand a speed of 25,000 miles per hour and a temperature of 5,000 degrees Fahrenheit (2,760 degrees Celsius).

Slowed by a series of parachutes until it is traveling at less than 20 miles per hour, Orion will splashdown off the coast of San Diego in the Pacific.

Divers will attach cables to tow it in a few hours to a US Navy ship.

- The crew -

The capsule will carry a mannequin called "Moonikin Campos," named after a legendary NASA engineer who saved Apollo 13, in the commander's seat, wearing the agency's brand new uniform.

Campos will be equipped with sensors to record acceleration and vibrations, and will also be accompanied by two other dummies: Helga and Zohar, who are made of materials designed to mimic bones and organs.

One will wear a radiation vest while the other won't, to test the impacts of the radiation in deep space.

- What will we see? -

Several on-board cameras will make it possible to follow the entire journey from multiple angles, including from the point of view of a passenger in the capsule.

Cameras at the end of the solar panels will take selfies of the craft with the Moon and Earth in the background.

- CubeSats -

Life will imitate art with a technology demonstration called Callisto, inspired by the Starship Enterprise's talking computer.

It is an improved version of Amazon's Alexa voice assistant, which will be requested from the control center to adjust the light in the capsule, or to read flight data.

The idea is to make life easier for astronauts in the future.

In addition, a payload of 10 CubeSats, shoebox-sized microsatellites, will be deployed by the rocket's upper stage.

They have numerous goals: studying an asteroid, examining the effect of radiation on living organisms, searching for water on the Moon.

These projects, carried out independently by international companies or researchers, take advantage of the rare opportunity of a launch into deep space.

S.Palmer--TFWP