The Fort Worth Press - Scientists develop mobile printer for mRNA vaccine patches

USD -
AED 3.67296
AFN 68.986845
ALL 88.969965
AMD 387.270403
ANG 1.802796
AOA 927.769041
ARS 961.531104
AUD 1.470588
AWG 1.8
AZN 1.70397
BAM 1.753208
BBD 2.019712
BDT 119.536912
BGN 1.752304
BHD 0.376921
BIF 2899.760213
BMD 1
BND 1.29254
BOB 6.912131
BRL 5.514604
BSD 1.000309
BTN 83.60415
BWP 13.223133
BYN 3.273617
BYR 19600
BZD 2.01627
CAD 1.35825
CDF 2871.000362
CHF 0.850342
CLF 0.033728
CLP 930.650396
CNY 7.051904
CNH 7.043005
COP 4151.84
CRC 519.014858
CUC 1
CUP 26.5
CVE 98.841848
CZK 22.451204
DJF 177.720393
DKK 6.681904
DOP 60.041863
DZD 132.138863
EGP 48.452557
ERN 15
ETB 116.075477
EUR 0.894904
FJD 2.200804
FKP 0.761559
GBP 0.75092
GEL 2.730391
GGP 0.761559
GHS 15.725523
GIP 0.761559
GMD 68.503851
GNF 8642.218776
GTQ 7.732543
GYD 209.255317
HKD 7.79145
HNL 24.813658
HRK 6.799011
HTG 131.985747
HUF 352.180388
IDR 15160.8
ILS 3.781915
IMP 0.761559
INR 83.48045
IQD 1310.379139
IRR 42092.503816
ISK 136.260386
JEP 0.761559
JMD 157.159441
JOD 0.708504
JPY 143.81504
KES 129.040385
KGS 84.238504
KHR 4062.551824
KMF 441.350384
KPW 899.999433
KRW 1332.490383
KWD 0.30507
KYD 0.833584
KZT 479.582278
LAK 22088.160814
LBP 89576.048226
LKR 305.193379
LRD 200.058266
LSL 17.560833
LTL 2.95274
LVL 0.60489
LYD 4.750272
MAD 9.699735
MDL 17.455145
MGA 4524.124331
MKD 55.221212
MMK 3247.960992
MNT 3397.999955
MOP 8.029402
MRU 39.752767
MUR 45.880378
MVR 15.360378
MWK 1734.35224
MXN 19.414904
MYR 4.205039
MZN 63.850377
NAD 17.560676
NGN 1639.450377
NIO 36.81526
NOK 10.484204
NPR 133.76929
NZD 1.60295
OMR 0.384512
PAB 1.000291
PEN 3.749294
PGK 3.91568
PHP 55.653038
PKR 277.935915
PLN 3.82535
PYG 7804.187153
QAR 3.646884
RON 4.449904
RSD 104.761777
RUB 92.240594
RWF 1348.488855
SAR 3.752553
SBD 8.306937
SCR 13.062038
SDG 601.503676
SEK 10.171204
SGD 1.291204
SHP 0.761559
SLE 22.847303
SLL 20969.494858
SOS 571.648835
SRD 30.205038
STD 20697.981008
SVC 8.752476
SYP 2512.529936
SZL 17.567198
THB 32.903649
TJS 10.633082
TMT 3.5
TND 3.030958
TOP 2.342104
TRY 34.122804
TTD 6.803666
TWD 31.981038
TZS 2726.202038
UAH 41.346732
UGX 3705.911619
UYU 41.33313
UZS 12729.090005
VEF 3622552.534434
VES 36.777762
VND 24605
VUV 118.722009
WST 2.797463
XAF 587.999014
XAG 0.03211
XAU 0.000381
XCD 2.70255
XDR 0.741335
XOF 588.001649
XPF 106.906428
YER 250.325037
ZAR 17.43056
ZMK 9001.203587
ZMW 26.482307
ZWL 321.999592
  • NGG

    0.7200

    69.55

    +1.04%

  • GSK

    -0.8200

    40.8

    -2.01%

  • CMSC

    0.0300

    25.15

    +0.12%

  • SCS

    -0.3900

    12.92

    -3.02%

  • RIO

    -1.6100

    63.57

    -2.53%

  • BCC

    -7.1900

    137.5

    -5.23%

  • CMSD

    0.0100

    25.02

    +0.04%

  • RBGPF

    58.8300

    58.83

    +100%

  • RYCEF

    0.0200

    6.97

    +0.29%

  • JRI

    -0.0800

    13.32

    -0.6%

  • BCE

    -0.1500

    35.04

    -0.43%

  • BTI

    -0.1300

    37.44

    -0.35%

  • AZN

    -0.5200

    78.38

    -0.66%

  • RELX

    -0.1400

    47.99

    -0.29%

  • VOD

    -0.0500

    10.01

    -0.5%

  • BP

    -0.1200

    32.64

    -0.37%

Scientists develop mobile printer for mRNA vaccine patches
Scientists develop mobile printer for mRNA vaccine patches / Photo: © GETTY IMAGES NORTH AMERICA/AFP

Scientists develop mobile printer for mRNA vaccine patches

Scientists said Monday they have developed the first mobile printer that can produce thumbnail-sized patches able to deliver mRNA Covid vaccines, hoping the tabletop device will help immunise people in remote regions.

Text size:

While many hurdles remain and the 3D printer is likely years away from becoming available, experts hailed the "exciting" finding.

The device prints two-centimetre-wide patches which each contain hundreds of tiny needles that administer a vaccine when pressed against the skin.

These "microneedle patches" offer a range of advantages over traditional jabs in the arm, including that they can be self-administered, are relatively painless, could be more palatable to the vaccine-hesitant and can be stored at room temperature for long periods of time.

The popular mRNA Covid-19 vaccines from Pfizer and Moderna need to be refrigerated, which has caused distribution complications -- particularly in developing countries that have condemned the unequal distribution of doses during the pandemic.

The new printer was tested with the Pfizer and Moderna jabs, according to a study in the journal Nature Biotechnology, but the goal of the international team of researchers behind it is for it to be adapted to whatever vaccines are needed.

Robert Langer, co-founder of Moderna and one of the study's authors, told AFP that he hoped the printer could be used for "the next Covid, or whatever crisis occurs".

Ana Jaklenec, a study author also from the Massachusetts Institute of Technology, said the printer could be sent to areas such as refugee camps or remote villages to "quickly immunise the local population," in the event of a fresh outbreak of a disease like Ebola.

- Vacuum-sealed -

Microneedle patch vaccines are already under development for Covid and a range of other diseases, including polio, measles and rubella.

But the patches have long struggled to take off because producing them is an expensive, laborious process often involving large machines for centrifugation.

To shrink that process down, the researchers used a vacuum chamber to suck the printer "ink" into the bottom of their patch moulds, so it reaches the points of the tiny needles.

The vaccine ink is made up of lipid nanoparticles containing mRNA vaccine molecules, as well as a polymer similar to sugar water.

Once allowed to dry, the patches can be stored at room temperature for at least six months, the study found. The patches even survived a month at a balmy 37 degrees Celsius (99 Fahrenheit).

Mice which were given a vaccine patch produced a similar level of antibody response to others immunised via a traditional injection, the study said.

The printed patches are currently being tested on primates, which if successful would lead to trials on humans.

- 'A real breakthrough'? -

The printer can make 100 patches in 48 hours. But modelling suggested that -- with improvements -- it could potentially print thousands a day, the researchers said.

"And you can have more than one printer," Langer added.

Joseph DeSimone, a chemist at Stanford University not involved in the research, said that "this work is particularly exciting as it realises the ability to produce vaccines on demand".

"With the possibility of scaling up vaccine manufacturing and improved stability at higher temperatures, mobile vaccine printers can facilitate widespread access to RNA vaccines," said DeSimone, who has invented his own microneedle patches.

Antoine Flahault, director of the Institute of Global Health at the University of Geneva, said that production and access to vaccines could be "transformed through such a printer".

"It might become a real breakthrough," he told AFP, while warning that this depended on approval and mass production, which could take years.

Darrick Carter, a biochemist and CEO of US biotech firm PAI Life Sciences, was less optimistic.

He said that the field of microneedle patches had "suffered for 30 years" because no one had yet been able to scale up manufacturing in a cost-effective way.

"Until someone figures out the manufacturing scale-up issues for microneedle patches they will remain niche products," he told AFP.

C.Dean--TFWP