The Fort Worth Press - The battle over mining mineral-rich deep sea 'nodules'

USD -
AED 3.672965
AFN 68.564771
ALL 93.747911
AMD 390.284429
ANG 1.810594
AOA 913.503248
ARS 1003.985697
AUD 1.539883
AWG 1.8025
AZN 1.702842
BAM 1.867656
BBD 2.028371
BDT 120.054049
BGN 1.867905
BHD 0.376893
BIF 2967.603314
BMD 1
BND 1.350013
BOB 6.941467
BRL 5.815601
BSD 1.004588
BTN 84.879318
BWP 13.715061
BYN 3.287735
BYR 19600
BZD 2.025029
CAD 1.398295
CDF 2869.999885
CHF 0.88682
CLF 0.035289
CLP 973.739958
CNY 7.2471
CNH 7.256035
COP 4391.61
CRC 510.697626
CUC 1
CUP 26.5
CVE 105.296581
CZK 24.213402
DJF 178.896958
DKK 7.12399
DOP 60.533139
DZD 133.589763
EGP 49.728798
ERN 15
ETB 125.19309
EUR 0.955165
FJD 2.27695
FKP 0.789317
GBP 0.79555
GEL 2.725041
GGP 0.789317
GHS 15.9733
GIP 0.789317
GMD 70.99948
GNF 8659.405931
GTQ 7.755077
GYD 210.182537
HKD 7.782735
HNL 25.38723
HRK 7.133259
HTG 131.897725
HUF 392.801974
IDR 15909.45
ILS 3.721665
IMP 0.789317
INR 84.493098
IQD 1316.106114
IRR 42105.00017
ISK 139.550476
JEP 0.789317
JMD 159.547343
JOD 0.709104
JPY 154.815003
KES 129.250139
KGS 86.496409
KHR 4051.853797
KMF 469.650261
KPW 899.999621
KRW 1401.674983
KWD 0.30772
KYD 0.837201
KZT 498.204702
LAK 22005.452662
LBP 89966.529634
LKR 292.295131
LRD 181.336364
LSL 18.178163
LTL 2.95274
LVL 0.60489
LYD 4.907395
MAD 10.047317
MDL 18.293632
MGA 4704.107261
MKD 58.794018
MMK 3247.960992
MNT 3397.999946
MOP 8.054107
MRU 39.953781
MUR 46.849926
MVR 15.450348
MWK 1742.028515
MXN 20.4392
MYR 4.467501
MZN 63.898751
NAD 18.17825
NGN 1691.079915
NIO 36.769541
NOK 11.080795
NPR 135.806643
NZD 1.71448
OMR 0.384998
PAB 1.004588
PEN 3.816004
PGK 4.044176
PHP 58.871499
PKR 279.238615
PLN 4.14822
PYG 7884.8734
QAR 3.662677
RON 4.753398
RSD 111.760027
RUB 101.299489
RWF 1380.387139
SAR 3.754503
SBD 8.36952
SCR 13.619873
SDG 601.511164
SEK 11.079195
SGD 1.346625
SHP 0.789317
SLE 22.584964
SLL 20969.504736
SOS 574.129781
SRD 35.404978
STD 20697.981008
SVC 8.790275
SYP 2512.529858
SZL 18.186159
THB 34.710066
TJS 10.699307
TMT 3.51
TND 3.178235
TOP 2.342099
TRY 34.574696
TTD 6.819267
TWD 32.55201
TZS 2652.358973
UAH 41.476647
UGX 3711.856071
UYU 42.810419
UZS 12854.999727
VES 46.269401
VND 25417.5
VUV 118.722009
WST 2.791591
XAF 626.409275
XAG 0.032277
XAU 0.000372
XCD 2.70255
XDR 0.766351
XOF 626.39432
XPF 113.885189
YER 249.900973
ZAR 18.115298
ZMK 9001.202295
ZMW 27.702577
ZWL 321.999592
  • SCS

    -0.0300

    13.04

    -0.23%

  • RIO

    0.1800

    62.57

    +0.29%

  • RBGPF

    59.6900

    59.69

    +100%

  • BCC

    2.9500

    140.36

    +2.1%

  • JRI

    0.0000

    13.23

    0%

  • CMSC

    0.1200

    24.64

    +0.49%

  • NGG

    -0.1700

    63.1

    -0.27%

  • CMSD

    0.1850

    24.445

    +0.76%

  • BCE

    -0.3200

    26.68

    -1.2%

  • RYCEF

    0.1800

    6.79

    +2.65%

  • RELX

    0.6500

    45.76

    +1.42%

  • GSK

    0.3500

    33.7

    +1.04%

  • AZN

    1.0600

    64.26

    +1.65%

  • VOD

    -0.1000

    8.84

    -1.13%

  • BTI

    -0.1000

    36.98

    -0.27%

  • BP

    0.4400

    29.52

    +1.49%

The battle over mining mineral-rich deep sea 'nodules'
The battle over mining mineral-rich deep sea 'nodules' / Photo: © National Oceanography Centre / Smartex project (NERC)/AFP

The battle over mining mineral-rich deep sea 'nodules'

They might look like pebbles strewn across the seafloor, but to the unique animals of the ocean deep, polymetallic nodules are a crucial habitat.

Text size:

To the mining firms vying to extract them, on the other hand, they promise to be a "battery in a rock".

This month at a week-long meeting of the International Seabed Authority (ISA), those opposed to mining the nodules suffered a serious setback when they failed to take a first step toward an international moratorium on the controversial practice.

And on Tuesday a Nauru-backed company told AFP it would forge ahead with contentious plans to start industrial deep-sea mining in the Pacific in 2026, vowing to overcome environmental criticisms that have dogged the project.

The contract is for NORI (Nauru Ocean Resources Inc), a subsidiary of Canada's The Metals Company.

- Ancient -

Polymetallic nodules are most abundant in the Clarion-Clipperton Zone (CCZ) -- off the west coast of Mexico -- as well as in the central Indian Ocean and in the Peru Basin in the South Pacific, according to the ISA.

The nodules, found on the seafloor several kilometers below the surface, were probably formed over millions of years.

They likely started off as solid fragments -- perhaps a shark tooth -- that sank down to the soft muddy seabed, then grew slowly through the accumulation of minerals present in the water in extremely low concentrations.

Today, they reach up to 20 centimeters (nearly 8 inches) in size -- "metal pebbles", according to the French Research Institute for Exploitation of the Sea.

Adrian Glover, of Britain's Natural History Museum, thinks of them as like "potatoes" scattered on the seabed, roughly 15 to 20 kilograms (33 to 44 pounds) of them per square metre.

One of the reasons why the nodules have never been buried under the mud in the Pacific is because the sea is food poor, with fewer dead organisms drifting down to the depths.

The nodules were first recovered from the Pacific deep in the 1870s by the British Challenger expedition, which used thousands of meters of hemp rope, a steam-powered winch and plenty of manpower to dredge the westerly part of the CCZ.

"Straightaway they realised they were very interesting, it was actually one of the biggest discoveries of the voyage for them," said Glover.

But they were not considered to be a "resource", he added.

More than 30 countries have called for a moratorium on deep sea mining, including France, Canada, Chile, Brazil and the United Kingdom.

Adding to environmentalists' concerns is a new study, published last month, showing that these mineral-rich nodules that mining companies wish to harvest produce oxygen, which is vital for sealife.

- 'Clean' power? -

Multiple companies have lined up exploratory contracts and pursued tests for these nodules. One of these is NORI, whose contract covers four zones totalling some 75,000 square kilometers (about 30,000 square miles) in the CCZ.

These nodules are mainly composed of manganese and iron, but they also contain strategic minerals such as cobalt, nickel and copper.

According to the ISA, the CCZ contains around 21 billion metric tons of nodules, which could correspond to a reserve of six billion metric tons of manganese, 270 million metric tons of nickel and 44 million metric tons of cobalt, exceeding the known totals of these three minerals on land.

Advocates of undersea mining point to their potential use for green technology, particularly for electric vehicles.

"A battery in a rock," said The Metals Company.

"Polymetallic nodules are the cleanest path toward electric vehicles."

But that is an argument rejected by environmental NGOs and some scientists.

This claim is "more public relations than scientific fact", Michael Norton, of the European Academies' Science Advisory Council, told AFP, calling it "rather misleading" to say that demand cannot be met without undersea minerals.

- Impact fears -

Unlike the other two types of subsea mining resources regulated by the ISA -- including the mining of hydrothermal vents -- nodules do not require digging or cutting.

In tests carried out at the end of 2022, NORI lowered a collector vehicle to a depth of 4.3 kilometers (about 2.7 miles).

It swallowed nodules and sediment and then separated them, transporting the nodules to the surface vessel via a giant pipe and discharging the sediment into the water.

Catherine Weller, global policy director at the conservation organization Fauna & Flora, said that while the nodules are lying on the seafloor, they cannot just be "plucked" individually.

The impacts on the wider ocean system of churning up sediment and releasing wastewater was "simply unknown", she added.

Weller said the unique composition of the nodules which attracts mining firms is also what makes them such a special habitat for the creatures that live in the ocean depths.

P.Grant--TFWP